Investment in Ansys Advanced CAE Software

Since its founding, EMPEL Systems, a leading UK manufacturer of electric propulsion technologies, has invested heavily in Ansys computer-aided engineering software (CAE) to aid in the development of its state-of-the-art propulsion systems. The investment over the past three years is providing significant assistance to the development of EMPEL advanced electric motors and power electronic systems, along with the multi-physics challenges these productions bring, such as electromagnetics, thermal-transfer, mechanical interactions, and rotor-dynamics disciplines.

Ansys Startup Program Logo

With the Ansys Workbench, the EMPEL CAE team are now able to operate computer-aided design (CAD) along with physics simulations and post-processing all in one place. Complimented by EMPEL’s own in-house analysis tools, Ansys addresses all aspects of system performance, including:

• Electromagnetics analysis
• Linear and non-linear mechanical finite element analysis (FEA)
• Heat transfer
• Fluid Flow (Ansys Fluent)
• Electronics thermal performance simulation
• System reliability and robustness
• Dynamic modelling

Electromagnetics analysis is at the heart of EMPEL’s product development system. Using MotorCAD and Maxwell packages within the Ansys Workbench allows for fast and accurate 2D and 3D simulation of all variants across the EMPEL range, from small EM75 compressor motors to the company’s largest EM300 traction motor-generators for vehicle propulsion and advanced applications. Furthermore, EMPEL utilises Ansys optiSLang to automate simulation toolchains and study the effects of thousands of design variations at once, such as multi-factorial design exploration, optimisation, robustness, and reliability analysis. Ansys CAE allows for faster identification of design combinations that benefits meeting our customer objectives.

In addition, the application of Ansys Mechanical FEA enables detailed analysis for a wide range of thermo-mechanical FEA issues, such as motor housing stresses, inverter power electronic heat transfer, and vibration behaviour in the elements of propulsion systems.

Throughout 2020 and 2021, EMPEL has invested over 5000 hours of analytical and design resources into its cooling system design, critical to achieving high levels of continuous torque or power. With the use of Ansys Fluent—the industry-leading fluid simulation software—EMPEL has created a cooling package that has met the needs of its motor and inverter systems, outperforming industry benchmarks by a significant degree.

“EMPEL Systems has greatly benefitted from its investment of the Ansys range of CAE software, boosting speeds of production and streamlining design challenges. All these benefits translate directly to customer satisfaction, which we strive to ensure with each of our services.”

EMPEL Co-Founder and Director, Jason King

EMPEL Systems awarded grant from the Advanced Route to Market Demonstrator Competition

EMPEL Systems is proud to have been selected as a winner of the Advanced Propulsion Centre’s (APC), Advanced Route to Market Demonstrator (ARMD) Competition.

Launched in June, the aim of the fast-start competition was to support UK Industry continuation with R&D after the COVID-19 pandemic and further accelerate the transition to zero emission vehicles. The programme, designed as a green recovery support initiative, was conceived and launched within just two months and received 50 applications, out of which 12 exciting demonstrator projects have been funded. The outputs will be displayed at the Cenex Low Carbon Vehicle show in September 2021. All projects have been contracted in record time to maximise the benefit to Industry and have now commenced. Once successfully concluded, the 12-month projects will be used to seed future development programmes nationwide as well as overseas investment into the UK.

The small-scale collaborative projects are being led by a range of OEMs and SMEs, focusing on products and processes across energy storage & management, power electronics, electric machines, lightweighting and hydrogen. They will demonstrate a range of digitalisation techniques including the creation of “digital twins” to advance the development of each project’s prototypes or processes, covering vehicles ranging from passenger cars and buses to all-terrain vehicles and LCVs.

Zoe Hall, Head of Competitions and Projects, from the APC said: “The competition has been a great success and we’re delighted to support these aspirational projects, which will help contribute to a thriving future in UK Industry. The whole process, along with the review of so many applications, has proved extremely beneficial in showcasing the continued demand for R&D support in this space.”

As part of the application process, entrants needed to demonstrate how a grant for their project would result in accelerated development of their product and a potential route to market. Combined with potential for scalability or providing a competitive advantage for the UK against other competing markets the projects needed to demonstrate significantly improved and low emission technology in order to support the UK market’s transition to Zero.